Calculation for concrete needed to keep a 3600L septic tank from floating at 30 Mackenzie Road.

Assumptions:

3600 L septic tank is a concrete from A \& B Precast
Safety factor is 1.5
Tank is buried 0.15 m below grade

$$
V_{c}=\frac{\left(S F F_{B} F_{T} F_{S}\right)}{Y_{c}}
$$

Where
$\mathrm{V}_{\mathrm{C}}=$ volume of concrete
$\mathrm{F}_{\mathrm{B}}=$ the buoyant force of the groundwater pushing up (kN)
$\mathrm{F}_{\mathrm{T}}=$ the weight of the tank (kN)
$\mathrm{F}_{\mathrm{S}}=$ the weight of the soil (kN)
SF = factor of safety 1.5-2.0
$\mathrm{Y}_{\mathrm{c}}=$ submerged specific weight of concrete ($14 \mathrm{kN} / \mathrm{m}^{3}$ typically)

```
\(\mathrm{F}_{\mathrm{B}}=\) volume of tank submerged \(\left(\mathrm{m}^{3}\right) \times\) specific weight of water \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
    \(=2.286 * 1.524 * 1.651 * 9.81\)
    \(=56.42 \mathrm{kN}\)
```

$\mathrm{F}_{\mathrm{T}}=$ mass of tank $(\mathrm{kg}) *$ gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right) / 1000$
= 3640 * 9.81 / 1000
$=35.7 \mathrm{kN}$
$\mathrm{F}_{\mathrm{s}}=$ volume of soil above tank $\left(\mathrm{m}^{3}\right)$ * specific weight of soil $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
$=(2.286 * 1.524 * 0.15) * 19$
$=9.9 \mathrm{kN}$
$\mathrm{V}_{\mathrm{C}}=\left(\mathrm{SF} * \mathrm{~F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{T}}-\mathrm{F}_{\mathrm{S}}\right) /$ Specific weight of concrete
$=(1.5 * 56.42-35.7-9.9) / 14$
$=(39.03) / 14$
$=2.78 \mathrm{~m}^{3}$

Formula taken from Ontario Rural Wastewater Centre: Advanced Design of On-site Wastewater Treatment Systems

