

Calculation for concrete needed to keep a 3600L septic tank from floating at 30 Mackenzie Road.

Assumptions: 3600 L septic tank is a concrete from A & B Precast Safety factor is 1.5 Tank is buried 0.15m below grade

$$V_{c} = \frac{(SF F_{B} F_{T} F_{s})}{Y_{c}}$$

Where

 V_c = volume of concrete F_B = the buoyant force of the groundwater pushing up (kN) F_T = the weight of the tank (kN) F_s = the weight of the soil (kN) SF = factor of safety 1.5 - 2.0 Y_c = submerged specific weight of concrete (14kN/m³ typically)

 F_B = volume of tank submerged (m³) x specific weight of water (kN/m³) = 2.286 * 1.524 * 1.651 *9.81 = 56.42kN F_T = mass of tank (kg) * gravity (m/s²) / 1000

= 3640 * 9.81 / 1000

= 35.7kN

 F_s = volume of soil above tank (m³) * specific weight of soil (kN/m³)

= (2.286*1.524*0.15) *19

 $V_{C} = (SF * F_{B} - F_{T} - F_{S}) / Specific weight of concrete$ = (1.5 * 56.42 - 35.7 - 9.9) / 14 = (39.03) / 14 = 2.78m³

Formula taken from Ontario Rural Wastewater Centre: Advanced Design of On-site Wastewater Treatment Systems